Prediction of software development faults in PL/SQL files using neural network models

نویسندگان

  • Tong-Seng Quah
  • Mie Mie Thet Thwin
چکیده

Database application constitutes one of the largest and most important software domains in the world. Some classes or modules in such applications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware in these classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the software development faults in PL/SQL files using SQL metrics. Based on actual project defect data, the SQL metrics are empirically validated by analyzing their relationship with the probability of fault detection across PL/SQL files. SQL metrics were extracted from Oracle PL/SQL code of a warehouse management database application system. The faults were collected from the journal files that contain the documentation of all changes in source files. The result demonstrates that these measures may be useful in predicting the fault concerning with database accesses. In our study, General Regression Neural Network and Ward Neural Network are used to evaluate the capability of this set of SQL metrics in predicting the number of faults in database applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Software Development Faults in PL/SQL Files using Genetic Nets

Database applications constitute one of the largest and most important software domains in the world. Some classes or modules in such applications are responsible for database operations. Structured Query Language (SQL) is used to communicate with database middleware in these classes or modules. It can be issued interactively or embedded in a host language. This paper aims to predict the softwa...

متن کامل

Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information & Software Technology

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2004